LEICA DM IRE2 MICROSCOPE MANUAL

Neuroscience Imaging Core
Rightmire Hall
Ohio State University

Director: Tony Brown
Rightmire 060
292-1205
brown.2302@osu.edu

Facility Manager: Paula Monsma
Rightmire 062
292-3025
monsma.1@osu.edu

This manual prepared by Tony Brown.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LEICA DM IRE2 MICROSCOPE MANUAL</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Getting to know the microscope</td>
<td>3</td>
</tr>
<tr>
<td>Microscope control panel</td>
<td>7</td>
</tr>
<tr>
<td>LCD display panel</td>
<td>8</td>
</tr>
<tr>
<td>LCD display panel buttons</td>
<td>9</td>
</tr>
<tr>
<td>Changing filters</td>
<td>10</td>
</tr>
<tr>
<td>Changing objectives</td>
<td>11</td>
</tr>
<tr>
<td>To switch between dry and immersion objectives</td>
<td>12</td>
</tr>
<tr>
<td>Adjust halogen lamp brightness</td>
<td>13</td>
</tr>
<tr>
<td>To focus using the focusing knobs</td>
<td>14</td>
</tr>
<tr>
<td>Using the focusing buttons</td>
<td>15</td>
</tr>
<tr>
<td>Changing the coarseness of the focusing</td>
<td>16</td>
</tr>
<tr>
<td>Eyepieces</td>
<td>17</td>
</tr>
<tr>
<td>Placing a slide on the Z-galvo stage</td>
<td>17</td>
</tr>
<tr>
<td>Transmitted light detector selection knob</td>
<td>18</td>
</tr>
<tr>
<td>Bright field observation</td>
<td>18</td>
</tr>
<tr>
<td>Koehler illumination</td>
<td>19</td>
</tr>
<tr>
<td>Phase contrast</td>
<td>20</td>
</tr>
<tr>
<td>Differential interference contrast (DIC)</td>
<td>21</td>
</tr>
<tr>
<td>Switching stage holders</td>
<td>22</td>
</tr>
<tr>
<td>Using immersion objectives</td>
<td>23</td>
</tr>
<tr>
<td>Cleaning objectives</td>
<td>24</td>
</tr>
<tr>
<td>Applying oil to objective without removing slide</td>
<td>25</td>
</tr>
<tr>
<td>Specimen preparation</td>
<td>26</td>
</tr>
<tr>
<td>DOs and DON’Ts</td>
<td>27</td>
</tr>
</tbody>
</table>
Getting to know the microscope

VIEW FROM LEFT

Transmitted light illumination column (tilts back for better access to stage)
Condenser lens
Z-galvo stage (detachable)
Filter cube turret
Laser scan head with 3 fluorescence detectors
Side port
Focus knob
Transmitted light detector
Eyepieces
Microscope control panel
Halogen lamp intensity adjustment wheel
VIEW FROM RIGHT

- Halogen lamp housing (transmitted light)
- Filter holders (empty)
- Transmitted light detector selection knob
- Condenser turret
- Mercury lamp housing (epi-fluorescence)
- Objective turret
- Tube lens module with Bertrand lens
- Focus knob
- X-Y stage movement
OBJECTIVE TURRET (DETAILED VIEW)

- Objective turret
- Objective prism turret
- DIC analyzer
- Filter cube turret

Epifluorescence Illumination diaphragm (controls brightness of illumination)

Epi-fluorescence field diaphragm (controls area of illumination)
OBJECTIVE PRISM TURRET POSITIONS

<table>
<thead>
<tr>
<th>Objective turret position</th>
<th>Description</th>
<th>Matching objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF</td>
<td>Empty (for bright field or phase contrast)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>DIC objective prism</td>
<td>20x multi-immersion</td>
</tr>
<tr>
<td>D</td>
<td>DIC objective prism</td>
<td>63x water immersion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100x oil immersion</td>
</tr>
<tr>
<td>E</td>
<td>DIC objective prism</td>
<td>40x oil immersion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>63x oil immersion</td>
</tr>
</tbody>
</table>

CONDENSER TURRET POSITIONS

<table>
<thead>
<tr>
<th>Condenser turret position</th>
<th>Description</th>
<th>Matching objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF</td>
<td>Empty (for bright field)</td>
<td></td>
</tr>
<tr>
<td>PH1</td>
<td>phase ring</td>
<td>10x dry</td>
</tr>
<tr>
<td>PH2</td>
<td>phase ring</td>
<td>40x dry</td>
</tr>
<tr>
<td>20</td>
<td>DIC condenser prism</td>
<td>20x multi-immersion</td>
</tr>
<tr>
<td>40/63</td>
<td>DIC condenser prism</td>
<td>40x oil immersion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>63x water immersion</td>
</tr>
<tr>
<td>63/100</td>
<td>DIC condenser prism</td>
<td>63x oil immersion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100x oil immersion</td>
</tr>
</tbody>
</table>
Microscope control panel

- **LCD display**
- **Panel buttons**
- **Red light shows current filter selection**
- **Switch filter cube**
 - GFP: green fluorochromes
 - RED: red fluorochromes
 - CFP+: far red fluorochromes
 - SCAN=empty slot
- **Select port**
 - VIS=light to eyepieces
 - SIDE=light to scanner
 - BOTTOM: disabled
- **Mercury lamp shutter**
 - (red light is on when shutter is closed)
- **Switch tube lens**
 - (disabled)
- LCD display panel

- Indicates position of objective relative to **upper limit**
- Indicates current **step size** setting for focusing
- \(\downarrow \) arrow indicates **lower limit** has been set
- \(\uparrow \) arrow indicates **upper limit** has been set

- Indicates current **objective**
- Indicates current **filter cube**
- Indicates **desired DIC objective prism**
- Indicates **actual DIC objective prism in light path**

- \(-183\mu m\) 53 \(\downarrow \)
- \(10\times PH1\) D, GFP D

- D = dry mode
- I = immersion mode
Do not press the LEARN button (this will enter you into learn mode, which you must not play with). If you accidentally press this button, you will see the word “EXIT “ flashing. Press the LEARN button again to exit the learn mode.
Changing filters

Use the motorized fluorescent filter cube changer on the microscope control panel:

Press left button to rotate filter cube turret left
Press right button to rotate filter cube turret right

Red light shows current filter cube selection

The filter cube turret contains three filters plus an empty slot

- **GFP**: cube for green fluorochromes
- **RED**: cube for red fluorochromes
- **CFP/**: cube for far red fluorochromes or cube for CFP (see Paula for details)
- **SCAN**: empty slot

Notes:

- The cube in the **CFP/** position is normally the far red cube, suitable for fluorochromes such as TOTO-3 and Cy5
- The **SCAN** position is used for confocal imaging and for transmitted light observation through the eyepieces
Changing objectives

Use the **objective turret control buttons** on the left side of the microscope

Press upper key to **increase** magnification

Press lower key to **decrease** magnification

Current objective indicated on **LCD display panel**
To switch between dry and immersion objectives

The standard objectives on our microscope are grouped into three blocks or modes:

100x oil immersion
63x oil immersion
40x oil immersion
20x oil/water/glycerol immersion
40x dry
10x dry

To reduce the chance of immersion medium getting on to a dry objective or the chance of mixing of different immersion media, the microscope will not allow you to move freely between these modes using the objective turret control buttons.

To switch from one mode to another:
- simultaneously press the “upper limit” and “lower limit” buttons on the microscope control panel
- the words “CHANGE OBJECTIVE” flash on the LCD display panel
- now you can change the objective using the objective turret control buttons

Press these two buttons simultaneously
Adjust halogen lamp brightness

Use the dial on the front left side of the microscope stand near the base

The lamp voltage will display automatically on the microscope control panel display when the intensity dial is adjusted

To switch off transmitted light illumination adjust lamp intensity to 2.5V then continue rotating dial beyond this point

0V on control panel display indicates illumination is off

To switch on transmitted light illumination, rotate briefly in the opposite direction
To focus using the focusing knobs

One way to focus is using the focusing knobs located on the left and right side of the microscope.

Turning the knob so that your thumb moves away from you focuses down

Turning the knob so that your thumb moves toward from you focuses up

Focusing knobs
(turn in direction of arrows to focus objective down)
Using the focusing buttons

Another way to focus is to use the focusing buttons located on the right side of the microscope.

Note about upper limits:

If an upper limit is set for the objective (see LCD display panel) then the objective will not move above that limit if you are focusing using the focusing buttons.

The only way to focus above the upper limit is to use the focusing knobs.

This is a safety feature to prevent accidental damage of the objective when focusing using the focusing buttons.
Changing the coarseness of the focusing

The focusing is electronic and has five settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Step size</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>Fine</td>
</tr>
<tr>
<td>S1</td>
<td>Medium fine</td>
</tr>
<tr>
<td>S2</td>
<td>Medium coarse</td>
</tr>
<tr>
<td>S3</td>
<td>Coarse</td>
</tr>
</tbody>
</table>

You can use any step size with any objective, but when you first select an objective the default step size will be as follows:

<table>
<thead>
<tr>
<th>Objective</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>63,100x</td>
<td>S0</td>
</tr>
<tr>
<td>40x</td>
<td>S1</td>
</tr>
<tr>
<td>20x</td>
<td>S2</td>
</tr>
<tr>
<td>10x</td>
<td>S3</td>
</tr>
</tbody>
</table>

Press **STEP button** to switch between S0, S1, S2 and S3.
Eyepieces

Adjusting interpupillary distance:
- Adjust eyepieces to match interpupillary distance by moving the eyepieces closer together or further apart.

Adjusting parfocality
- Focus on specimen using electronic focusing controls.
- Close right eye and adjust the left eyepiece so that the image appears in focus to your left eye.
- Close the left eye and adjust the right eyepiece so that the image appears in focus to your right eye.
- The eyepieces are now parfocal.

Placing a slide on the Z-galvo stage

- To avoid touching or damaging the objective, lower the objective turret all the way using the focusing buttons.

 ![Slide Placement Diagram]

 - Position the slide holder clips as shown above.
 - Insert slide into the holder in a front-to-back motion (1).
 - Slide clips inward onto slide to secure the slide (2).
Transmitted light detector selection knob

For any transmitted light observation (bright field, DIC, phase contrast), this knob should be in the **vis** position.

Bright field observation

Bright field observation means observation with transmitted light using no contrast enhancement method (e.g. no phase contrast or DIC)

For bright field observation:
- rotate **condenser turret** to BF (empty) position
- rotate **objective prism turret** to BF (empty) position
- switch **filter cube turret** to SCAN (empty) position

Condenser turret in bright field (BF) position
Koehler illumination

Koehler illumination is essential to obtain good transmitted light images

- Select objective
- Open the **condenser aperture diaphragm** (move lever to the right)
- Focus on specimen
- Close the **field aperture diaphragm** (move lever to left)
- Focus condenser using **condenser focusing knob** until the image of the aperture is sharp
- If necessary center the field diaphragm in the field of view using the two **centering screws** located on the front of the condenser
- Open **field aperture diaphragm** until it just disappears from the field of view
- Close down the **condenser aperture diaphragm** until the desired contrast is achieved
Phase contrast

For phase contrast, you need:
- a phase contrast objective
- a matching phase ring in the condenser turret

To set up phase contrast:
- Select a phase contrast objective (i.e. either of the dry objectives)
- rotate **objective prism turret** to BF (empty) position
- Rotate **condenser turret** to select phase ring
 PH1 for 10x
 PH2 for 40x
- Focus on specimen
- Insert the **Bertrand lens** into the optical path using by rotating the **tube lens module** from “SCAN” to “B”
- Focus on the phase ring using the Bertrand lens **focus slider** on the tube lens module
- If condenser phase ring (dark ring) is not centered on the objective phase ring (light ring), center it using the insertable phase ring centering keys (see Paula for instructions)
- Set Koehler illumination
Differential interference contrast (DIC)

For DIC, you need:
- A DIC objective (i.e. any of the immersion objectives)
- A polarizer above the condenser (no need to insert this – it is kept in the light path at all times)
- A condenser prism in the condenser turret
- An analyzer beneath the objective prism turret
- An objective prism in the objective prism turret

To set up DIC:
- Select a DIC objective (any of the immersion objectives)
- The objective DIC prism required for that objective is displayed on the microscope control panel
- Manually rotate condenser turret to select the appropriate objective DIC prism

<table>
<thead>
<tr>
<th>Objective</th>
<th>Condenser prism</th>
<th>Objective prism</th>
</tr>
</thead>
<tbody>
<tr>
<td>100x oil</td>
<td>63/100</td>
<td>D</td>
</tr>
<tr>
<td>63x oil</td>
<td>63/100</td>
<td>E</td>
</tr>
<tr>
<td>63x water</td>
<td>40/63</td>
<td>D</td>
</tr>
<tr>
<td>40x</td>
<td>40/63</td>
<td>E</td>
</tr>
<tr>
<td>20x multi-immersion</td>
<td>20</td>
<td>C</td>
</tr>
</tbody>
</table>

- Manually rotate objective prism turret to select objective prism
- Insert analyzer into light path
Switching stage holders

The microscope has two stage holders:

- **Z-galvo stage** (permits rapid and precise movement in Z axis for acquisition of Z stacks)
- **Universal stage holder** (holds a wider range of dishes)

To remove Z-galvo stage:

- Unscrew the two thumbnail screws (circled in red):
- Place stage (still attached to the cable) on top of the laser scan head as shown:

Take care not to touch condenser lens surface when removing and replacing the stages!
Using immersion objectives

OIL immersion:
- Clean coverslips before using immersion objectives
- Apply oil to the objective or to the coverslip before placing your slide on the stage
- Use only LEICA IMMERSION OIL
- Use the minimum amount of oil necessary
- If you use too much oil it may run down the side of the objective and damage the optics!

To apply oil to an objective:
- dip oil applicator in immersion oil bottle
- allow excess to drain off
- apply oil to objective by touching to the metal next to the lens
- DO NOT TOUCH THE LENS DIRECTLY!

WATER immersion:

The 63x water immersion objective (not normally installed on the microscope) uses water rather than oil as the immersion medium.

Contact Paula for instructions on using this objective.
Cleaning objectives

This microscope is equipped with the highest quality objectives, with a total value exceeding $30,000!

You must exercise great care to preserve these objectives

To clean oil off immersion objectives:
- Remove specimen from stage
- Blot (not wipe!) off excess oil using lens tissue
- Use a fresh area of the lens tissue for each blot
- Repeat blotting until no more oil comes off onto the lens tissue
- Wipe the metal housing around the lens using lens tissue
- It typically takes 2 or 3 sheets of lens tissue to properly clean a single objective

What to do if you accidentally get oil on a dry objective:
- Blot off excess with lens tissue
- Then contact Paula, who will clean the lens with special cleaning fluid (do not attempt this yourself!)
- Lens tissue alone will not get all the oil off the lens and this will interfere with the optics
Applying oil to objective without removing slide

FOR ADVANCED USERS ONLY!

You can use the following procedure if you are observing your slide and you wish to switch to an oil immersion objective without removing the slide from the stage holder.

- Focus objective turret all the way down using the **focus down button**
- In the LCS software, click on [obj] button and select the objective diametrically opposite in the objective turret from the objective you want to apply oil to (i.e. **3 positions away from the current objective**)

<table>
<thead>
<tr>
<th>Objective you want to use</th>
<th>Objective in opposite position</th>
</tr>
</thead>
<tbody>
<tr>
<td>100x oil</td>
<td>20x multi-immersion</td>
</tr>
<tr>
<td>63x oil</td>
<td>40x dry</td>
</tr>
<tr>
<td>40x oil</td>
<td>10x dry</td>
</tr>
<tr>
<td>20x multi-immersion</td>
<td>100x oil</td>
</tr>
<tr>
<td>40x dry</td>
<td>63x oil</td>
</tr>
<tr>
<td>10x dry</td>
<td>40x oil</td>
</tr>
</tbody>
</table>

- This will rotate the objective that you want to apply oil to so that it is accessible from the right of the microscope
- Apply oil to the objective
- In the LCS software, click on [obj] button and select the objective that you applied oil to
- This will rotate the objective back into the light path
- Focus up on your specimen
Specimen preparation

Some general tips:
- Select fluorochromes that are optimally excited by the confocal laser lines
- For multiple labeling, the less overlap between the excitation and emission spectra the better
- Always use #1.5 coverslips
- Mount coverslip to slide securely and seal with nail enamel or mounting medium that solidifies
- Do not observe on the microscope until the nail enamel or mounting medium has hardened!
- Secure the slide with the clips when acquiring Z series
DOs and DON’Ts

DOs
- Use only lens tissue to clean objectives
- Use Kimwipes to clean coverslips and slides

DON'Ts
- Never touch any optical surface with anything other than lens tissue
- Never clean the objectives with any kind of solvent
- Never use Kimwipes to clean objectives or any other optics
- Never use any liquid cleaners or solvents to clean the microscope optics or any part of the microscope!

When to ask for Paula’s assistance
- Changing mercury or halogen bulbs
- Aligning mercury and halogen lamps
- Adding or removing objectives
- Adding or removing filter cubes
- Using the 63x water immersion objective
- Cleaning oil off 10x and 40x dry objectives
- Using the Leica objective warmer
- Using the Bioptechs heated chamber
- Any other time you are unsure what you are doing!
Extras

<table>
<thead>
<tr>
<th>Setting</th>
<th>Step size</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>Finest</td>
<td>63,100x</td>
</tr>
<tr>
<td>S1</td>
<td></td>
<td>40x</td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td>20x</td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td>10x</td>
</tr>
<tr>
<td>SC</td>
<td>Coarsest</td>
<td></td>
</tr>
</tbody>
</table>

Note about the coarsest focusing setting (SC):

Press both upper and lower focus keys simultaneously to switch to the coarsest focusing setting (SC)

Press both focus keys simultaneously to switch back to fine focusing setting (S0-S3)